CC4 Mathematics Unit-wise MCQ

Teacher: Babli Saha

$\underline{\text{Unit } 1}$

- 1. Binary operation on a set A is a mapping whose domain set is
 - (a) \mathbb{R}
 - (b) A
 - (c) $A \times A$
 - (d) none of these

2. Arithmetical subtraction(-) is binary relation on

- (a) \mathbb{Z}
- (b) Z⁺
- (c) Z⁻
- (d) \mathbb{Q}
- 3. Which of the following is not associative operation?
 - (a) arithmetic addition
 - (b) matrix addition
 - (c) arithmetic subtraction
 - (d) matrix multiplication
- 4. Consider the group $\mathbb{Z}^2 = \{(a, b) : a, b \in \mathbb{Z}\}$ under component-wise addition. Then which of the following is a subgroup of \mathbb{Z}^2 ?
 - (a) $\{(a,b) \in \mathbb{Z}^2 \mid ab = 0\}$
 - (b) $\{(a,b) \in \mathbb{Z}^2 | 3a + 2b = 15\}$
 - (c) $\{(a,b) \in \mathbb{Z}^2 | 7|ab\}$
 - (d) $\{(a,b) \in \mathbb{Z}^2 | \ 2|a \text{ and } 3|b\}$

5. In the group $GL(2, \mathbb{Z}_7)$, inverse of $A = \begin{pmatrix} 4 & 5 \\ 6 & 3 \end{pmatrix}$ is

 $\begin{array}{c} \text{(a)} & \left(\begin{array}{cc} 1 & 2\\ 5 & 3 \end{array}\right) \\ \text{(b)} & \left(\begin{array}{cc} 1 & 3\\ 5 & 6 \end{array}\right) \\ \text{(c)} & \left(\begin{array}{cc} 5 & 6\\ 3 & 1 \end{array}\right) \end{array}$

(d) none of these

- 6. In $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ denote the group of non-zero complex numbers under multiplication. Suppose $Y_n = \{z \in \mathbb{C} \mid z^n = 1\}, n \in \mathbb{N}.$ Which of the following is not a subgroup of \mathbb{C}^* ?
 - (a) $\bigcup_{n=1}^{100} Y_n$ (b) $\bigcup_{n=1}^{\infty} Y_{2^n}$
 - (c) $\bigcup_{n=100}^{\infty} Y_n$

 - (d) $\bigcup_{n=1}^{\infty} Y_n$
- 7. Which of the following groupoid is a group?
 - (a) $(\mathbb{N}, \circ), a \circ b = a + b \ \forall a, b \in \mathbb{N}$
 - (b) $(\mathbb{N}, \circ), a \circ b = a \ \forall a, b \in \mathbb{N}$
 - (c) $(\mathbb{Z}, \circ), a \circ b = a + b 1 \quad \forall a, b \in \mathbb{Z}$
 - (d) $(\mathbb{Z}, \circ), a \circ b = a + 2b \ \forall a, b \in \mathbb{Z}$

Unit 2

- 1. If G be a cyclic group of order 8 with generator x then another generator of G be:
 - (a) x^5
 - (b) x^4
 - (c) x^6
 - (d) x^2
- 2. If the cyclic group G contains 11 distinct elements then it has:
 - (a) only one generator
 - (b) two generators
 - (c) three generators
 - (d) ten generators
- 3. The set of all even integers $2\mathbb{Z}$ is a subgroup of $(\mathbb{Z}, +)$ Then the right coset $2\mathbb{Z}+(-3)$ contains the element
 - (a) 4
 - (b) 6
 - (c) 1
 - (d) 10
- 4. If the group G contains 13 distinct elements then the number of possible subgroup $(\neq G)$ of G is
 - (a) 10
 - (b) 12
 - (c) 5
 - (d) 1
- 5. A group containing 27 elements is necessarily abelian:
 - (a) True
 - (b) False

- 6. Let H be a subgroup of a group G and $a, b \in G$. Then $b \in aH$ if and only if :
 - (a) $ab \in H$
 - (b) $ab^{-1} \in H$
 - (c) $a^{-1}b \in H$
 - (d) none of these
- 7. Let A_6 be the group of even permutations of 6 distinct symbols. Then the number of elements of order 6 in A_6 is:
 - (a) 0
 - (b) 1
 - (c) 3
 - (d) 6
- 8. In the permutation group $S_n (n \ge 5)$, if H is the smallest subgroup containing all the 3-cycles, then which one of the following is true?
 - (a) Order of H is 2
 - (b) Index of H in S_n is 2 https://www.overleaf.com/project/5e44af69cce67a00011c5054
 - (c) H is abelian
 - (d) $H = S_n$
- 9. Which one of the following is true?
 - (a) Z_n is cyclic if and only if n is prime.
 - (b) Every proper subgroup of Z_n is cyclic.
 - (c) Every proper subgroup of S_4 is cyclic.
 - (d) If every proper subgroup of a group is cyclic , then the group is cyclic.
- 10. Let f, g, h are the permutations on the set $\{\alpha, \beta, \gamma, \delta\}$, where f interchanges α and β but fixes γ and δ
 - q interchanges β and γ but fixes α and δ
 - h interchanges γ and δ but fixes α and β

Which of the following permutations interchange(s) α and δ but fixes β and γ ?

(a) $f \circ g \circ h \circ g \circ f$ (b) $g \circ h \circ f \circ h \circ g$ (c) $g \circ f \circ h \circ f \circ g$ (d) $h \circ g \circ f \circ g \circ h$

11. Let G be a group. Let $x \in G$ be such that O(x) = 5. Then:

- (a) $O(x^{10}) = 5$
- (b) $O(x^{15}) = 5$
- (c) $O(x^{23}) = 5$
- (d) none of these

12. In the additive group \mathbb{Z}_6 the order of the element [4] is :

- (a) 0
- (b) 2

- (c) 3
- (d) 6

13. Let G be a group. Let $x, y \in G$ be such that $O(x) = 4, O(y) = 2, x^3y = yx$, Then O(xy) is :.

- (a) 2
- (b) 5
- (c) 6
- (d) ∞

14. The number of elements of order 2 in a finite group of even order is:

- (a) a prime number
- (b) an even number
- (c) an odd number
- (d) exactly one

15. If $p = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 6 & 5 & 4 & 1 \end{pmatrix}$, which of the following is true? (a) $p^2 = i$ (b) $p^3 = i$ (c) $p^4 = i$ (d) $p^5 = i$

16. Let H, K be two subgroups of a group G such that O(H) = 5, O(K) = 9. Then O(HK) is :

- (a) 1
- (b) 5
- (c) 9
- (d) 45

Unit 3

- 1. The total number of normal subgroups of the Klein's 4 group is :
 - (a) 1
 - (b) 3
 - (c) 4
 - (d) 5
- 2. Let G be f order 20 a group o
 - (a) normal
 - (b) not normal
 - (c) isomorphic to G
 - (d) none of the above

3. The number of normal subgroups of order 7 in a group of order 14 is :

- (a) 1
- (b) 3

- (c) 5
- (d) 7
- 4. Let $G = (\mathbb{C}^*, \cdot)$ be the group of non-zero complex numbers. Let $H = \{z \in G : |z| = 1\}$. Then G/H is isomorphic to:
 - (a) \mathbb{Q}^*
 - (b) \mathbb{R}^+
 - (c) **Z***
 - (d) none of these
- 5. The centre $\mathbb{Z}(G)$ of a group G is :
 - (a) a cyclic subgroup of G
 - (b) a non-cyclic subgroup of G
 - (c) a normal subgroup of G
 - (d) not a normal subgroup of ${\cal G}$
- 6. The number of subgroups of the group $\mathbb{Z}/42\mathbb{Z}$
 - (a) 6
 - (b) 7
 - (c) 8
 - (d) 2
- 7. Let G be a group of order 231. The number of elements of order 11 in G is :
 - (a) 10
 - (b) 1
 - (c) 11
 - (d) 15
- 8. Let (G, \circ) and (G', \star) be two groups and $\phi : G \to G'$ be a homomorphism. Then ϕ is one-one if and only if :
 - (a) $\ker \phi = \{e_{G'}\}$
 - (b) ker $\phi = \{e_G\}$
 - (c) $\ker \phi = G$
 - (d) ker $\phi \subset G'$

9. Let $\phi : (\mathbb{R}, +) \to (\mathbb{R} - \{0\}, \cdot)$ is a homomorphism and $\phi(2) = 3$, then $\phi(-6)$ is:

- (a) 1/3
- (b) 1/9
- (c) 1/27
- (d) -18

10. The number of homomorphism from \mathbb{Z}_4 to \mathbb{Z}_{12} is:

- (a) 4
- (b) 3

- (c) 12
- (d) 48
- 11. The number of onto homomorphism from \mathbb{Z}_8 to \mathbb{Z}_4 is:
 - (a) 4
 - (b) 3
 - (c) 2
 - (d) 1

12. The number of group homomorphism from the cyclic group \mathbb{Z}_4 to the cyclic group \mathbb{Z}_7 is:

- (a) 7
- (b) 3
- (c) 2
- (d) 1

13. Let G be a group of order 48 and H be a subgroup of order 24. Then :

- (a) H is normal
- (b) H is commutative
- (c) H is not normal
- (d) none of these
- 14. Let G be a group satisfying the property that $f: G \to \mathbb{Z}_{221}$ is a homomorphism implies $f(g) = 0 \forall g \in G$. Then a possible group G is :
 - (a) \mathbb{Z}_{21}
 - (b) \mathbb{Z}_{51}
 - (c) \mathbb{Z}_{91}
 - (d) \mathbb{Z}_{119}
- 15. Let H denotes the quotient group \mathbb{Q}/\mathbb{Z} , Consider the following statements: I.Every cyclic group of H is finite.

II. Every finite cyclic group is isomorphic to a subgroup of H. Which of the following holds:

- (a) I is true but II is false
- (b) II is true but I is false
- (c) Both I and II are true
- (d) Neither I nor II is true.
- 16. Which of the following is isomorphism?
 - (a) $f: (\mathbb{Z}, +) \to (\mathbb{Q}, +)$
 - (b) $f: (\mathbb{Q}, +) \to (\mathbb{R}, +)$
 - (c) $f: (\mathbb{Q}, +) \to (\mathbb{Q}, \cdot)$
 - (d) none of these

17. Let (G, \circ) and (G', \star) be two groups and $\phi: G \to G'$ be an isomorphism. Then :

(a) G' is commutative if and only if G is cyclic.

- (b) G' is commutative if G is commutative.
- (c) G' might not be commutative even if G is commutative.
- (d) G' might be commutative even if G is commutative
- 18. Let G be a finite group and H be a normal subgroup of G of order 2. Then the order of the center of G is:
 - (a) 0
 - (b) 1
 - (c) an integer ≥ 2
 - (d) an odd integer ≥ 3

19. Let G be a cyclic group of order 24. The total number of group homomorphism of G onto itself is:

- (a) 7
- (b) 8
- (c) 17
- (d) 24